Last month I've been playing with the TI MSP430 Launchpad and when I work with ADC it lacks of visualization. Since Launchpad have UART-USB interface, I decided to plot incoming data.
I'm using MSP430G2553, and all code was written for this controller.
Firmware
Firmware of controller is pretty straightforward in large scale: it just sends value from ADC to the UART continously - with one note: before start to send anything, we need to make a "handshake" - receive start symbol from computer. So, high-level algorithm will be like this:1) Initialize UART[1] (9600 baud) and ADC[2]
2) Wait for start signal ("handshake")
3) In forever loop send temperature to UART
ADC initialization to read temperature (10 channel):
void ADC_init(void) {
ADC10CTL0 = SREF_1 + REFON + ADC10ON + ADC10SHT_3;
ADC10CTL1 = INCH_10 + ADC10DIV_3;
}
int getTemperatureCelsius()
{
int t = 0;
__delay_cycles(1000); // Not neccessary.
ADC10CTL0 |= ENC + ADC10SC;
while (ADC10CTL1 & BUSY);
t = ADC10MEM;
ADC10CTL0 &=~ ENC;
return(int) ((t * 27069L - 18169625L) >> 16); // magic conversion to Celsius
}
Handshake:
// UART Handshake...
unsigned char c;
while ((c = uart_getc()) != '1');
uart_puts((char *)"\nOK\n");
We're waiting for '1' and sending "OK" when we receive it.
After that, program starts to send temperature indefinitely:
while(1) {
uart_printf("%i\n", getTemperatureCelsius());
P1OUT ^= 0x1;
}
uart_printf converts integer value into string and send over UART [3].
The source code of firmware in the bottom of this post.
Plotting Application
I love matplotlib in python, it's great library to plot everything.To read data from UART, I used pySerial library. That's all we need.When we connect launchpad to computer, device /dev/ttyACM0 is created. It's serial port which we need to use.
Application consists of two threads:
- Serial port processing
- Continous plot updating
Serial port processing
Let's define global variable data = deque(0 for _ in range(5000)), it will contain data to plot and dataP = deque(0 for _ in range(5000)), it will contain approximated values.In the serial port thread, we need to open connection:
ser = serial.Serial('/dev/ttyACM0', 9600, timeout=1)
then, make a "handshake":
ok = b''
while ok.strip() != b'OK':
ser.write(b"1")
ok = ser.readline()
print("Handshake OK!\n")
As you see, we're waiting the "OK" in response to "1". After "handshake", we can start reading data:
while True:
try:
val = int(ser.readline().strip())
addValue(val)
except ValueError:
pass
UART is not very stable, so sometimes you can receive distorted data. That's why I eat exceptions.
addValue here is function that processes data and puts it to data variable:
avg = 0
def addValue(val):
global avg
data.append(val)
data.popleft()
avg = avg + 0.1 * (val - avg)
dataP.append(avg)
dataP.popleft()
Also it calculates weighted moving average:
Continous plot updating
First, let's create figure with two plots:fig, (p1, p2) = plt.subplots(2, 1)
plot_data, = p1.plot(data, animated=True)
plot_processed, = p2.plot(data, animated=True)
p1.set_ylim(0, 100) # y limits
p2.set_ylim(0, 100)
To draw animated plot, we need to define function that will update data:
def animate(i):
plot_data.set_ydata(data)
plot_data.set_xdata(range(len(data)))
plot_processed.set_ydata(dataP)
plot_processed.set_xdata(range(len(dataP)))
return [plot_data, plot_processed]
ani = animation.FuncAnimation(fig, animate, range(10000),
interval=50, blit=True)
And show the plot window:
plt.show()
Here's the result of program's work:
On the first plot it's raw data received through serial port, on the second it's average.
Source codes
Desktop live plotting application:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | import matplotlib.pyplot as plt import matplotlib.animation as animation import serial import threading from collections import deque data = deque(0 for _ in range(5000)) dataP = deque(0 for _ in range(5000)) avg = 0 def addValue(val): global avg data.append(val) data.popleft() avg = avg + 0.1 * (val - avg) dataP.append(avg) dataP.popleft() def msp430(): print("Connecting...") ser = serial.Serial('/dev/ttyACM0', 9600, timeout=1) print("Connected!") # Handshake... ok = b'' while ok.strip() != b'OK': ser.write(b"1") ok = ser.readline() print(ok.strip()) print("Handshake OK!\n") while True: try: val = int(ser.readline().strip()) addValue(val) print(val) except ValueError: pass if __name__ == "__main__": threading.Thread(target=msp430).start() fig, (p1, p2) = plt.subplots(2, 1) plot_data, = p1.plot(data, animated=True) plot_processed, = p2.plot(data, animated=True) p1.set_ylim(0, 100) p2.set_ylim(0, 100) def animate(i): plot_data.set_ydata(data) plot_data.set_xdata(range(len(data))) plot_processed.set_ydata(dataP) plot_processed.set_xdata(range(len(dataP))) return [plot_data, plot_processed] ani = animation.FuncAnimation(fig, animate, range(10000), interval=50, blit=True) plt.show() |
MSP430 full firmware:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | /* NOTICE Used code or got an idea from: UART: Stefan Wendler - http://gpio.kaltpost.de/?page_id=972 ADC: http://indiantinker.wordpress.com/2012/12/13/tutorial-using-the-internal-temperature-sensor-on-a-msp430/ printf: http://forum.43oh.com/topic/1289-tiny-printf-c-version/ */ #include <msp430g2553.h> // =========== HEADERS =============== // UART void uart_init(void); void uart_set_rx_isr_ptr(void (*isr_ptr)(unsigned char c)); unsigned char uart_getc(); void uart_putc(unsigned char c); void uart_puts(const char *str); void uart_printf(char *, ...); // ADC void ADC_init(void); // =========== /HEADERS =============== // Trigger on received character void uart_rx_isr(unsigned char c) { P1OUT ^= 0x40; } int main(void) { WDTCTL = WDTPW + WDTHOLD; BCSCTL1 = CALBC1_8MHZ; //Set DCO to 8Mhz DCOCTL = CALDCO_8MHZ; //Set DCO to 8Mhz P1DIR = 0xff; P1OUT = 0x1; ADC_init(); uart_init(); uart_set_rx_isr_ptr(uart_rx_isr); __bis_SR_register(GIE); // global interrupt enable // UART Handshake... unsigned char c; while ((c = uart_getc()) != '1'); uart_puts((char *)"\nOK\n"); ADC10CTL0 |= ADC10SC; while(1) { uart_printf("%i\n", getTemperatureCelsius()); P1OUT ^= 0x1; } } // ======================================================== // ADC configured to read temperature void ADC_init(void) { ADC10CTL0 = SREF_1 + REFON + ADC10ON + ADC10SHT_3; ADC10CTL1 = INCH_10 + ADC10DIV_3; } int getTemperatureCelsius() { int t = 0; __delay_cycles(1000); ADC10CTL0 |= ENC + ADC10SC; while (ADC10CTL1 & BUSY); t = ADC10MEM; ADC10CTL0 &=~ ENC; return(int) ((t * 27069L - 18169625L) >> 16); } // ======================================================== // UART #include <legacymsp430.h> #define RXD BIT1 #define TXD BIT2 /** * Callback handler for receive */ void (*uart_rx_isr_ptr)(unsigned char c); void uart_init(void) { uart_set_rx_isr_ptr(0L); P1SEL = RXD + TXD; P1SEL2 = RXD + TXD; UCA0CTL1 |= UCSSEL_2; //SMCLK //8,000,000Hz, 9600Baud, UCBRx=52, UCBRSx=0, UCBRFx=1 UCA0BR0 = 52; //8MHz, OSC16, 9600 UCA0BR1 = 0; //((8MHz/9600)/16) = 52.08333 UCA0MCTL = 0x10|UCOS16; //UCBRFx=1,UCBRSx=0, UCOS16=1 UCA0CTL1 &= ~UCSWRST; //USCI state machine IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt } void uart_set_rx_isr_ptr(void (*isr_ptr)(unsigned char c)) { uart_rx_isr_ptr = isr_ptr; } unsigned char uart_getc() { while (!(IFG2&UCA0RXIFG)); // USCI_A0 RX buffer ready? return UCA0RXBUF; } void uart_putc(unsigned char c) { while (!(IFG2&UCA0TXIFG)); // USCI_A0 TX buffer ready? UCA0TXBUF = c; // TX } void uart_puts(const char *str) { while(*str) uart_putc(*str++); } interrupt(USCIAB0RX_VECTOR) USCI0RX_ISR(void) { if(uart_rx_isr_ptr != 0L) { (uart_rx_isr_ptr)(UCA0RXBUF); } } // ======================================================== // UART PRINTF #include "stdarg.h" static const unsigned long dv[] = { // 4294967296 // 32 bit unsigned max 1000000000, // +0 100000000, // +1 10000000, // +2 1000000, // +3 100000, // +4 // 65535 // 16 bit unsigned max 10000, // +5 1000, // +6 100, // +7 10, // +8 1, // +9 }; static void xtoa(unsigned long x, const unsigned long *dp) { char c; unsigned long d; if(x) { while(x < *dp) ++dp; do { d = *dp++; c = '0'; while(x >= d) ++c, x -= d; uart_putc(c); } while(!(d & 1)); } else uart_putc('0'); } static void puth(unsigned n) { static const char hex[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'}; uart_putc(hex[n & 15]); } void uart_printf(char *format, ...) { char c; int i; long n; va_list a; va_start(a, format); while(c = *format++) { if(c == '%') { switch(c = *format++) { case 's': // String uart_puts(va_arg(a, char*)); break; case 'c': // Char uart_putc(va_arg(a, char)); break; case 'i': // 16 bit Integer case 'u': // 16 bit Unsigned i = va_arg(a, int); if(c == 'i' && i < 0) i = -i, uart_putc('-'); xtoa((unsigned)i, dv + 5); break; case 'l': // 32 bit Long case 'n': // 32 bit uNsigned loNg n = va_arg(a, long); if(c == 'l' && n < 0) n = -n, uart_putc('-'); xtoa((unsigned long)n, dv); break; case 'x': // 16 bit heXadecimal i = va_arg(a, int); puth(i >> 12); puth(i >> 8); puth(i >> 4); puth(i); break; case 0: return; default: goto bad_fmt; } } else bad_fmt: uart_putc(c); } va_end(a); } |
Sources
- [1] UART: Stefan Wendler - http://gpio.kaltpost.de/?page_id=972
- [2] ADC: http://indiantinker.wordpress.com/2012/12/13/tutorial-using-the-internal-temperature-sensor-on-a-msp430/
- [3] printf: http://forum.43oh.com/topic/1289-tiny-printf-c-version/
Комментариев нет
Отправить комментарий